Getting the books Combinatorics and Commutative Algebra: Second Edition now is not type of inspiring means. You could not single-handedly going as soon as book increase or library or borrowing from your friends to entrance them. This is an very easy means to specifically get lead by on-line. This online statement Combinatorics and Commutative Algebra: Second Edition can be one of the options to accompany you following having additional time.

It will not waste your time. admit me, the e-book will extremely sky you new business to read. Just invest tiny epoch to contact this on-line statement Combinatorics and Commutative Algebra: Second Edition as competently as evaluation them wherever you are now.

Related with Combinatorics And Commutative Algebra: Second Edition: 3026642-file
Combinatorics and Commutative Algebra - Richard P. Stanley 2007-12-13
* Stanley represents a broad perspective with respect to two significant topics from Combinatorial Commutative Algebra: 1) The theory of invariants of a torus acting linearly on a polynomial ring, and 2) The face ring of a simplicial complex * In this new edition, the author further develops some interesting properties of face rings with application to combinatorics

Algebraic Combinatorics - Richard P. Stanley 2013-06-17 Written by one of the foremost experts in the field, Algebraic Combinatorics is a unique undergraduate textbook that will prepare the next generation of pure and applied mathematicians. The combination of the author's extensive knowledge of combinatorics and classical and practical tools from algebra will inspire motivated students to delve deeply into the fascinating interplay between algebra and combinatorics. Readers will be able to apply their newfound knowledge to mathematical, engineering, and business models. The text is primarily intended for use in a one-semester advanced undergraduate course in algebraic combinatorics, enumerative combinatorics, or graph theory. Prerequisites include a basic knowledge of linear algebra over a field, existence of finite fields, and group theory. The topics in each chapter build on one another and include extensive problem sets as well as hints to selected exercises. Key topics include walks on graphs, cubes and the Radon transform, the Matrix–Tree Theorem, and the Sperner property. There are also three appendices on purely enumerative aspects of combinatorics related to the chapter material: the RSK algorithm, plane partitions, and the enumeration of labeled trees. Richard Stanley is currently professor of Applied Mathematics at the Massachusetts Institute of Technology. Stanley has received several awards including the George Polya Prize in applied combinatorics, the Guggenheim Fellowship, and the Leroy P. Steele Prize for mathematical exposition. Also by the author: Combinatorics and Commutative Algebra, Second Edition, © Birkhauser.

Monomial Algebras - Rafael Villarreal 2018-10-08 Monomial Algebras, Second Edition presents algebraic, combinatorial, and computational methods for studying monomial algebras and their ideals, including Stanley–Reisner rings, monomial subrings, Ehrhart rings, and blowup algebras. It emphasizes square-free monomials and the corresponding graphs, clutters, or hypergraphs. New to the Second Edition Four new chapters that focus on the algebraic properties of blowup algebras in combinatorial optimization problems of clutters and hypergraphs Two new chapters that explore the algebraic and combinatorial properties of the edge ideal of clutters and hypergraphs Full revisions of existing chapters to provide an up-to-date account of the subject Bringing together several areas of pure and applied mathematics, this book shows how monomial algebras are related to polyhedral geometry, combinatorial optimization, and combinatorics of hypergraphs. It directly links the algebraic properties of monomial algebras to combinatorial structures (such as simplicial complexes, posets, digraphs, graphs, and clutters) and linear optimization problems.

Enumerative Combinatorics - Richard P. Stanley 2011-12-12 "Richard Stanley's two-volume basic introduction to enumerative combinatorics has become the standard guide to the topic for students and experts alike. This thoroughly revised second edition of Volume 1 includes ten new sections and more than 300 new exercises, most with solutions, reflecting numerous new developments since the publication of the first edition in 1986. The author brings the coverage up to date and includes a wide variety of additional applications and examples, as well as updated and expanded chapter bibliographies. Many of the less difficult new exercises have no solutions so that they can more easily be assigned to students. The material on P-partitions has been rearranged and generalized; the treatment of permutation statistics has been greatly enlarged; and there are also new sections on q-analogues of permutations, hyperplane arrangements, the cd-index, promotion and evacuation and differential posets"--

Combinatorial Commutative Algebra - Ezra Miller 2006-03-30 Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs
Cohen-Macaulay Rings - Winfried Bruns 1998-06-18 Now in paperback, this advanced text on Cohen-Macaulay rings has been updated and expanded.

Combinatorial Commutative Algebra - Ezra Miller 2006-03-30 Recent developments are covered. Contains over 100 figures and 250 exercises. Includes complete proofs.

Algebraic Combinatorics and Coinvariant Spaces - Francois Bergeron 2009-07-06 Written for graduate students in mathematics or non-specialist mathematicians who wish to learn the basics about some of the most important current research in the field, this book provides an intensive, yet accessible, introduction to the subject of algebraic combinatorics. After recalling basic notions of combinatorics, representation theory, and some commutative algebra, the main material provides links between the study of coinvariant—or diagonally coinvariant—spaces and the study of Macdonald polynomials and related operators. This gives rise to a large number of combinatorial questions relating to objects counted by familiar numbers such as the factorials, Catalan numbers, and the number of Cayley trees or parking functions. The author offers ideas for extending the theory to other families of finite Coxeter groups, besides permutation groups.

Progress in commutative algebra - Christopher Francisco 2012 This is the second of two volumes of a state-of-the-art survey article collection which emanates from three commutative algebra sessions at the 2009 Fall Southeastern American Mathematical Society Meeting at Florida Atlantic University. The articles reach into diverse areas of commutative algebra and build a bridge between Noetherian and non-Noetherian commutative algebra. The current trends in two of the most active areas of commutative algebra are presented: non-noetherian rings (factorization, ideal theory, integrality), advances from the homological study of nonetherian rings (the local theory, graded situation and its interactions with combinatorics and geometry). This second volume discusses closures, decompositions, and factorization.

Gröbner Bases in Commutative Algebra - Viviana Ene 2011-12-01 This book provides a concise yet comprehensive and self-contained introduction to Grobner basis theory and its applications to various current research topics in commutative algebra. It especially aims to help young researchers become acquainted with fundamental tools and techniques related to Grobner bases which are used in commutative algebra and to arouse their interest in exploring further topics such as toric rings, Koszul and Rees algebras, determinantal ideal theory, binomial edge ideals, and their applications to statistics. The book can be used for graduate courses and self-study. More than 100 problems will help the readers to better understand the main theoretical results and will inspire them to further investigate the topics studied in this book.

Monomial Ideals - Jürgen Herzog 2010-09-28 This book demonstrates current trends in research on combinatorial and computational commutative algebra with a primary emphasis on topics related to monomial ideals. Providing a useful and quick introduction to areas of research spanning these fields, Monomial Ideals is split into three parts. Part I offers a quick introduction to the modern theory of Gröbner bases as well as the detailed study of generic initial ideals. Part II supplies Hilbert functions and resolutions and some of the combinatorics related to monomial ideals including the Kruskal—Katona theorem and algebraic aspects of Alexander duality. Part III discusses combinatorial applications of monomial ideals, providing a valuable overview of some of the central trends in algebraic combinatorics. Main subjects include edge ideals of finite graphs, powers of ideals, algebraic shifting theory and an introduction to discrete polymatroids. Theory is complemented by a number of examples and exercises throughout, bringing the reader to a deeper understanding of concepts explored within the text. Self-contained and concise, this book will appeal to a wide range of readers, including PhD students on advanced courses, experienced researchers, and combinatorialists and non-specialists with a basic knowledge of commutative algebra. Since their first meeting in 1985, Juergen Herzog (Universität Duisburg-Essen, Germany) and Takayuki Hibi (Osaka University, Japan), have worked together on a number of research projects, of which recent results are presented in this monograph.
Commutative Algebra, Algebraic Geometry, and Computational Methods

David Eisenbud 1999-07

This volume contains papers presented at the International Conference on Commutative Algebra, Algebraic geometry, and Computational methods held in Hanoi in 1996, as well as papers written subsequently. It features both expository articles as well as research papers on a range of currently active areas in commutative algebra, algebraic geometry (particularly surveys on intersection theory) and combinatorics. In addition, a special feature is a section on the life and work of Wolfgang Vogel, who was an organiser of the conference.

Classical Topology and Combinatorial Group Theory

John Stillwell 2012-12-06

In recent years, many students have been introduced to topology in high school mathematics. Having met the Mobius band, the seven bridges of Konigsberg, Euler's polyhedron formula, and knots, the student is led to expect that these picturesque ideas will come to full flower in university topology courses. What a disappointment "undergraduate topology" proves to be! In most institutions it is either a service course for analysts, on abstract spaces, or else an introduction to homological algebra in which the only geometric activity is the completion of commutative diagrams. Pictures are kept to a minimum, and at the end the student still does not understand the simplest topological facts, such as the reason why knots exist. In my opinion, a well-balanced introduction to topology should stress its intuitive geometric aspect, while admitting the legitimate interest that analysts and algebraists have in the subject. At any rate, this is the aim of the present book. In support of this view, I have followed the historical development where practicable, since it clearly shows the influence of geometric thought at all stages. This is not to claim that topology received its main impetus from geometric recreations like the seven bridges; rather, it resulted from the visualization of problems from other parts of mathematics-complex analysis (Riemann), mechanics (Poincare), and group theory (Dehn). It is these connections to other parts of mathematics which make topology an important as well as a beautiful subject.

Commutative Algebra

David Eisenbud 2013-12-01

This is a comprehensive review of commutative algebra, from localization and primary decomposition through dimension theory, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. The book gives a concise treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Many exercises included.

Combinatorial Algebraic Topology

Dimitry Kozlov 2008-01-08

This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.

Universal Algebra

George Grätzer 2008-12-15

Universal Algebra has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science. Each chapter is followed by an extensive list of exercises and problems. The "state of the art" account also includes new appendices (with contributions from B. Jönsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well selected additional bibliography of over 1250 papers and books which makes this an indispensable new edition for students, faculty, and workers in the field.

Algebras, Rings and Modules

Michiel Hazewinkel 2016-04-05

The theory of algebras, rings, and modules is one of the fundamental domains of modern mathematics. General algebra, more specifically non-commutative algebra, is poised for major advances in the twenty-first century (together
with and in interaction with combinatorics), just as topology, analysis, and probability experienced in the twentieth century. This volume is a continuation and an in-depth study, stressing the non-commutative nature of the first two volumes of Algebras, Rings and Modules by M. Hazewinkel, N. Gubareni, and V. V. Kirichenko. It is largely independent of the other volumes. The relevant constructions and results from earlier volumes have been presented in this volume.

Mathematica Scandinavica 2008

Progress in Commutative Algebra 2 Christopher Francisco 2012-04-26
This is the second of two volumes of a state-of-the-art survey article collection which emanates from three commutative algebra sessions at the 2009 Fall Southeastern American Mathematical Society Meeting at Florida Atlantic University. The articles reach into diverse areas of commutative algebra and build a bridge between Noetherian and non-Noetherian commutative algebra. The current trends in two of the most active areas of commutative algebra are presented: non-noetherian rings (factorization, ideal theory, integrality), advances from the homological study of noetherian rings (the local theory, graded situation and its interactions with combinatorics and geometry). This second volume discusses closures, decompositions, and factorization.

Introduction to Commutative Algebra and Algebraic Geometry Ernst Kunz 2012-11-06 Originally published in 1985, this classic textbook is an English translation of Einführung in die kommutative Algebra und algebraische Geometrie. As part of the Modern Birkhäuser Classics series, the publisher is proud to make Introduction to Commutative Algebra and Algebraic Geometry available to a wider audience. Aimed at students who have taken a basic course in algebra, the goal of the text is to present important results concerning the representation of algebraic varieties as intersections of the least possible number of hypersurfaces and—a closely related problem—with the most economical generation of ideals in Noetherian rings. Along the way, one encounters many basic concepts of commutative algebra and algebraic geometry and proves many facts which can then serve as a basic stock for a deeper study of these subjects.

Computational Commutative Algebra 2 Martin Kreuzer 2005-07-06 "The second volume of the authors’ ‘Computational commutative algebra’...covers on its 586 pages a wealth of interesting material with several unexpected applications. ... an encyclopedia on computational commutative algebra, a source for lectures on the subject as well as an inspiration for seminars. The text is recommended for all those who want to learn and enjoy an algebraic tool that becomes more and more relevant to different fields of applications." --ZENTRALBLATT MATH

Computational Commutative Algebra and Combinatorics Takayuki Hibi 2002 This volume constitutes the proceedings of the International Conference on "Computational Commutative Algebra and Combinatorics" held in Osaka, Japan. It contains excellent survey articles and research papers on various topics related to the theme of the conference. Of particular interest are two survey articles, "Algebraic Shifting" by Gil Kalai and "Generic Initial Ideals and Graded Betti Numbers" by Jurgen Herzog. The volume is suitable for graduate students and research mathematicians interested in discrete mathematics.

Computational Mathematics with SageMath P. Zimmermann 2018-12-10 “This fantastic and deep book about how to use Sage for learning and doing mathematics at all levels perfectly complements the existing Sage documentation. It is filled with many carefully thought through examples and exercises, and great care has been taken to put computational functionality into proper mathematical context. Flip to almost any random page in this amazing book, and you will learn how to play with
and visualize some beautiful part of mathematics.” --- William A. Stein, CEO, SageMath, and professor of mathematics, University of Washington SageMath, or Sage for short, is an open-source mathematical software system based on the Python language and developed by an international community comprising hundreds of teachers and researchers, whose aim is to provide an alternative to the commercial products Magma, Maple, Mathematica, and MATLAB®. To achieve this, Sage relies on many open-source programs, including GAP, Maxima, PARI, and various scientific libraries for Python, to which thousands of new functions have been added. Sage is freely available and is supported by all modern operating systems. Sage provides a wonderful scientific and graphical calculator for high school students, and it efficiently supports undergraduates in their computations in analysis, linear algebra, calculus, etc. For graduate students, researchers, and engineers in various mathematical specialties, Sage provides the most recent algorithms and tools, which is why several universities around the world already use Sage at the undergraduate level.

Computational Algebraic Geometry-HENRY SCHENCK 2003-10-06 Table of contents

The Geometry of Syzygies-David Eisenbud 2006-10-28 First textbook-level account of basic examples and techniques in this area. Suitable for self-study by a reader who knows a little commutative algebra and algebraic geometry already. David Eisenbud is a well-known mathematician and current president of the American Mathematical Society, as well as a successful Springer author.

Putnam and Beyond-Răzvan Gelca 2017-09-19 This book takes the reader on a journey through the world of college mathematics, focusing on some of the most important concepts and results in the theories of polynomials, linear algebra, real analysis, differential equations, coordinate geometry, trigonometry, elementary number theory, combinatorics, and probability. Preliminary material provides an overview of common methods of proof: argument by contradiction, mathematical induction, pigeonhole principle, ordered sets, and invariants. Each chapter systematically presents a single subject within which problems are clustered in each section according to the specific topic. The exposition is driven by nearly 1300 problems and examples chosen from numerous sources from around the world; many original contributions come from the authors. The source, author, and historical background are cited whenever possible. Complete solutions to all problems are given at the end of the book. This second edition includes new sections on quadratic polynomials, curves in the plane, quadratic fields, combinatorics of numbers, and graph theory, and added problems or theoretical expansion of sections on polynomials, matrices, abstract algebra, limits of sequences and functions, derivatives and their applications, Stokes' theorem, analytical geometry, combinatorial geometry, and counting strategies. Using the W.L. Putnam Mathematical Competition for undergraduates as an inspiring symbol to build an appropriate math background for graduate studies in pure or applied mathematics, the reader is eased into transitioning from problem-solving at the high school level to the university and beyond, that is, to mathematical research. This work may be used as a study guide for the Putnam exam, as a text for many different problem-solving courses, and as a source of problems for standard courses in undergraduate mathematics. Putnam and Beyond is organized for independent study by undergraduate and graduate students, as well as teachers and researchers in the physical sciences who wish to expand their mathematical horizons.

The Topology of Bounded Degree Graph Complexes and Finite Free Resolutions-Xun Dong 2001

Analytic Combinatorics-Philippe Flajolet 2009-01-15 Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory,
statistical physics, computational biology, and information theory. With a
careful combination of symbolic enumeration methods and complex
analysis, drawing heavily on generating functions, results of sweeping
generality emerge that can be applied in particular to fundamental
structures such as permutations, sequences, strings, walks, paths, trees,
graphs and maps. This account is the definitive treatment of the topic. The
authors give full coverage of the underlying mathematics and a thorough
treatment of both classical and modern applications of the theory. The text
is complemented with exercises, examples, appendices and notes to aid
understanding. The book can be used for an advanced undergraduate or a
graduate course, or for self-study.

Computing the Continuous Discretely - Matthias Beck 2015-11-14
This richly illustrated textbook explores the amazing interaction between
combinatorics, geometry, number theory, and analysis which arises in the
interplay between polyhedra and lattices. Highly accessible to advanced
undergraduates, as well as beginning graduate students, this second edition
is perfect for a capstone course, and adds two new chapters, many new
exercises, and updated open problems. For scientists, this text can be
utilized as a self-contained tooling device. The topics include a friendly
invitation to Ehrhart’s theory of counting lattice points in polytopes, finite
Fourier analysis, the Frobenius coin-exchange problem, Dedekind sums,
solid angles, Euler–Maclaurin summation for polytopes, computational
geometry, magic squares, zonotopes, and more. With more than 300
exercises and open research problems, the reader is an active participant,
carried through diverse but tightly woven mathematical fields that are
inspired by an innocently elementary question: What are the relationships
between the continuous volume of a polytope and its discrete volume?
Reviews of the first edition: “You owe it to yourself to pick up a copy of
Computing the Continuous Discretely to read about a number of interesting
problems in geometry, number theory, and combinatorics.” — MAA Reviews
“The book is written as an accessible and engaging textbook, with many
examples, historical notes, pithy quotes, commentary integrating the mate
rial, exercises, open problems and an extensive bibliography.” — Zentralblatt MATH
“This beautiful book presents, at a level suitable for
advanced undergraduates, a fairly complete introduction to the problem of
counting lattice points inside a convex polyhedron.” — Mathematical

Polynomial Methods in Combinatorics - Larry Guth 2016-06-10
This book explains some recent applications of the theory of polynomials and algebraic
gometry to combinatorics and other areas of mathematics. One of the first
results in this story is a short elegant solution of the Kakeya problem for
finite fields, which was considered a deep and difficult problem in
combinatorial geometry. The author also discusses in detail various
problems in incidence geometry associated to Paul Erdős's famous distinct
distances problem in the plane from the 1940s. The proof techniques are
also connected to error-correcting codes, Fourier analysis, number theory,
and differential geometry. Although the mathematics discussed in the book
is deep and far-reaching, it should be accessible to first- and second-year
graduate students and advanced undergraduates. The book contains
approximately 100 exercises that further the reader's understanding of the
main themes of the book.

Design Theory - Charles C. Lindner 2017-03-27
Design Theory, Second Edition presents some of the most important techniques used for
constructing combinatorial designs. It augments the descriptions of the
constructions with many figures to help students understand and enjoy this
branch of mathematics. This edition now offers a thorough development of
the embedding of Latin squares and combinatorial designs. It also presents
some pure mathematical ideas, including connections between universal
algebra and graph designs. The authors focus on several basic designs,
including Steiner triple systems, Latin squares, and finite projective and
affine planes. They produce these designs using flexible constructions and
then add interesting properties that may be required, such as resolvability,
embeddings, and orthogonality. The authors also construct more
complicated structures, such as Steiner quadruple systems. By providing
both classical and state-of-the-art construction techniques, this book
enables students to produce many other types of designs.
Computational Commutative Algebra 1 - Martin Kreuzer 2008-07-15 This introduction to polynomial rings, Gröbner bases and applications bridges the gap in the literature between theory and actual computation. It details numerous applications, covering fields as disparate as algebraic geometry and financial markets. To aid in a full understanding of these applications, more than 40 tutorials illustrate how the theory can be used. The book also includes many exercises, both theoretical and practical.

Catalan Numbers - Richard P. Stanley 2015-03-30 Catalan numbers are probably the most ubiquitous sequence of numbers in mathematics. This book gives for the first time a comprehensive collection of their properties and applications to combinatorics, algebra, analysis, number theory, probability theory, geometry, topology, and other areas. Following an introduction to the basic properties of Catalan numbers, the book presents 214 different kinds of objects counted by them in the form of exercises with solutions. The reader can try solving the exercises or simply browse through them. Some 68 additional exercises with prescribed difficulty levels present various properties of Catalan numbers and related numbers, such as Fuss-Catalan numbers, Motzkin numbers, Schröder numbers, Narayana numbers, super Catalan numbers, q-Catalan numbers and (q,t)-Catalan numbers. The book ends with a history of Catalan numbers by Igor Pak and a glossary of key terms. Whether your interest in mathematics is recreation or research, you will find plenty of fascinating and stimulating facts here.

Combinatorial Algebra: Syntax and Semantics - Mark V. Sapir 2014-10-06 Combinatorial Algebra: Syntax and Semantics provides comprehensive account of many areas of combinatorial algebra. It contains self-contained proofs of more than 20 fundamental results, both classical and modern. This includes Golod-Shafarevich and Olshanskii's solutions of Burnside problems, Shirshov's solution of Kurosh's problem for PI rings, Belov's solution of Specht's problem for varieties of rings, Grigorchuk's solution of Milnor's problem, Bass-Guivarc'h theorem about growth of nilpotent groups, Kleiman's solution of Hanna Neumann's problem for varieties of groups, Adian's solution of von Neumann-Day's problem, Trahtman's solution of the road coloring problem of Adler, Goodwyn and Weiss. The book emphasize several "universal" tools, such as trees, subshifts, uniformly recurrent words, diagrams and automata. With over 350 exercises at various levels of difficulty and with hints for the more difficult problems, this book can be used as a textbook, and aims to reach a wide and diversified audience. No prerequisites beyond standard courses in linear and abstract algebra are required. The broad appeal of this textbook extends to a variety of student levels: from advanced high-schoolers to undergraduates and graduate students, including those in search of a Ph.D. thesis who will benefit from the "Further reading and open problems" sections at the end of Chapters 2 -5. The book can also be used for self-study, engaging those beyond the classroom setting: researchers, instructors, students, virtually anyone who wishes to learn and better understand this important area of mathematics.

A Singular Introduction to Commutative Algebra - Gert-Martin Greuel 2012-12-06 This book can be understood as a model for teaching commutative algebra, and takes into account modern developments such as algorithmic and computational aspects. As soon as a new concept is introduced, the authors show how the concept can be worked on using a computer. The computations are exemplified with the computer algebra system Singular, developed by the authors. Singular is a special system for polynomial computation with many features for global as well as for local commutative algebra and algebraic geometry. The book includes a CD containing Singular as well as the examples and procedures explained in the book.

Combinatorics and Graph Theory - John Harris 2009-04-03 These notes were first used in an introductory course team taught by the authors at Appalachian State University to advanced undergraduates and beginning graduates. The text was written with four pedagogical goals in mind: offer a variety of topics in one course, get to the main themes and tools as efficiently as possible, show the relationships between the different topics, and include recent results to convince students that mathematics is a living discipline.
Conceptual Mathematics

F. William Lawvere 2009-07-30 In the last 60 years, the use of the notion of category has led to a remarkable unification and simplification of mathematics. Conceptual Mathematics introduces this tool for the learning, development, and use of mathematics, to beginning students and also to practising mathematical scientists. This book provides a skeleton key that makes explicit some concepts and procedures that are common to all branches of pure and applied mathematics. The treatment does not presuppose knowledge of specific fields, but rather develops, from basic definitions, such elementary categories as discrete dynamical systems and directed graphs; the fundamental ideas are then illuminated by examples in these categories. This second edition provides links with more advanced topics of possible study. In the new appendices and annotated bibliography the reader will find concise introductions to adjoint functors and geometrical structures, as well as sketches of relevant historical developments.

Young Tableaux in Combinatorics, Invariant Theory, and Algebra

Joseph P.S. Kung 2014-05-12 Young Tableaux in Combinatorics, Invariant Theory, and Algebra: An Anthology of Recent Work is an anthology of papers on Young tableaux and their applications in combinatorics, invariant theory, and algebra. Topics covered include reverse plane partitions and tableau hook numbers; some partitions associated with a partially ordered set; frames and Baxter sequences; and Young diagrams and ideals of Pfaffians. Comprised of 16 chapters, this book begins by describing a probabilistic proof of a formula for the number f? of standard Young tableaux of a given shape f?. The reader is then introduced to the generating function of R. P. Stanley for reverse plane partitions on a tableau shape; an analog of Schensted's algorithm relating permutations and triples consisting of two shifted Young tableaux and a set; and a variational problem for random Young tableaux. Subsequent chapters deal with certain aspects of Schensted's construction and the derivation of the Littlewood-Richardson rule for the multiplication of Schur functions using purely combinatorial methods; monotonicity and unimodality of the pattern inventory; and skew-symmetric invariant theory. This volume will be helpful to students and practitioners of algebra.

Download Combinatorics And Commutative Algebra: Second Edition pdf
Read Online Combinatorics And Commutative Algebra: Second Edition pdf
Find more pdf: [pdf search](https://example.com/pdf/search)